C2-C1-C7	121.6(11)	C2'-C1'-C7'	121.8 (11)
C6-C1-C7	117.8 (11)	C6'C1'C7'	121.1 (11)
C1-C2-C3	123.0 (11)	C1'-C2'-C3'	128.8 (11)
C1-C2-O27	117.5 (11)	C1'C2'O27'	115.7 (10)
C3—C2—O27	119.5 (10)	C3'—C2'—O27'	115.0 (10)
C2C3C4	116.3 (11)	C2'-C3'-C4'	112.4 (11)
C2-C3-C8	119.7 (10)	C2'-C3'-C8'	128.3 (11)
C4-C3-C8	123.6 (10)	C4'C3'C8'	119.1 (11)
C3-C4-C5	120.5 (12)	C3'—C4'—C5'	120.0 (13)
C4-C5-C6	121.2 (12)	C4'C5'C6'	125.4 (14)
C1C6C5	118.4 (12)	C1'C6'C5'	115.5 (12)
C3-C8-C9	107.4 (9)	C3'-C8'-C9'	104.6 (10)
C10C9C8	119.1 (9)	C10'-C9'-C8'	120.5 (10)
C10C9C14	118.4 (10)	C10'-C9'-C14'	119.7 (11)
C14-C9-C8	122.1 (10)	C14'-C9'-C8'	119.8 (10)
C11C10C9	120.8 (10)	C11'-C10'-C9'	123.5 (11)
C11-C10-015	121.8 (10)	C11'-C10'-O15'	117.8 (10)
C9-C10-O15	117.4 (9)	C9'—C10'—O15'	118.6 (10)
C10-C11-C12	119.5 (11)	C10'-C11'-C12'	117.6 (11)
C11-C12-C13	120.2 (11)	C11'-C12'-C13'	118.9 (12)
C12C13C14	119.5 (11)	C12'-C13'-C14'	121.4 (12)
C13-C14-C9	121.4 (11)	C13'—C14'—C9'	118.7 (11)
C10-015-C16	112.3 (9)	C10'-015'-C16'	112.8 (9)
C17-C16-015	105.7 (10)	C17'C16'O15'	106.1 (10)
C16C17O18	105.0 (10)	C16'-C17'-O18'	105.2 (10)
C17-018-C19	111.8 (10)	C17'—O18'—C19'	110.0 (10)
C20-C19-018	109.3 (13)	C20'C19'O18'	104.1 (13)
C19C20O21	102.1 (14)	C19'-C20'-O21'	92.8 (14)
C20-021-C22	122.8 (21)	C20'-O21'-C22'	103.9 (15)
C23-C22-O21	123.7 (25)	C23'C22'O21'	98.5 (17)
C22-C23-O24	125.4 (22)	C22'—C23'—O24'	113.0 (19)
C26C25O24	116.0 (24)	C26'—C25'—O24'	115.8 (18)
C25C26O27	103.1 (19)	C25'-C26'-O27'	113.9 (13)
C23-024-C25	150.0 (19)	C23'-O24'-C25'	127.6 (18)
C2-027-C26	114.5 (10)	C2′—O27′—C26′	117.4 (9)

Table 3. Distances (Å) between O atoms of the etheralchains characterizing the aperture of the crownedcalixarene

	Α	A'
015027	3.24 (4)	3.25 (4)
O18· · · O24 ⁱ	5.58 (6)	5.39 (6)
O 21· · · O 21 ⁱ	7.24 (8)	6.57 (8)

Symmetry code: (i) indicates the equivalent atom generated by the twofold axis.

As the crystals of the studied calixarene were of poor quality, half the reciprocal space was measured and averaged values were calculated to increase the measurement accuracy.

Data collection: Structure Determination Package (Enraf-Nonius, 1979). Cell refinement: Structure Determination Package. Data reduction: local program (CRMC2, France). Program(s) used to solve structure: MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEPII (Johnson, 1976) and GENMOL (Pèpe & Siri, 1990).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1099). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Alfieri, C., Dradi, E., Pochini, A., Ungaro, R. & Andreetti, G. D. (1983). J. Chem. Soc. Chem. Commun. pp. 1075–1077.

Arduini, A., Casnati, A., Dodi, L., Pochini, A. & Ungaro, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1597-1598.

Asfari, Z., Astier, J. P., Bressot, C., Estienne, J., Pèpe, G. & Vicens,
J. (1994). J. Incl. Phenom. Special Commemorative Volume on
Calixarenes, edited by J. Vicens. Dordrecht: Kluwer.
Atwood, J. L., Coleman, A. W., Zhang, H. & Bott, S. G. J. (1989).
J. Incl. Phenom. 7, 203–211.
Enraf-Nonius (1979). Structure Determination Package. Enraf-
Nonius, Delft, The Netherlands.
Grootenhuis, P. D. J., Kollman, P. A., Grönen, L. C., Reinhoudt, D.
N., van Hummel, G. J., Ugozzoli, F. & Andreetti, G. D. (1990). J.
Am. Chem. Soc. 112, 4165–4176.
Iwamoto, J., Araki, J. & Shinkai, S. (1991). J. Org. Chem. 56, 4955-
4962.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge
National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G.,
Declercq, JP. & Woolfson, M. M. (1980). MULTAN80, A System

Pèpe, G. & Siri, D. (1990). Studies in Physical and Theoretical Chemistry, Vol. 71, edited by J. L. Rivail, pp. 93-101. Amsterdam: Elsevier.

of Computer Programs for the Automatic Solution of Crystal

Structures from X-ray Diffraction Data. Univs. of York, England,

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Vicens, J. & Bhömer, V. (1991). Calixarenes. A Versatile Class of Macrocyclic Compounds. Dordrecht: Kluwer.

Acta Cryst. (1995). C51, 729-732

and Louvain, Belgium.

3-Oxo-2-phenyl-3a,4,5,7a-tetrahydro-5,7aepoxyisoindoline-4-carboxylic Acid in Two Crystalline Phases, Solvated with DMSO and Unsolvated

Gérard Pèpe

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille CEDEX 9, France

JEAN-PIERRE REBOUL

GERCTOP, URA CNRS 1411, Faculté de Pharmacie, 27 Bd Jean-Moulin, 13385 Marseille CEDEX 5, France

PIERRE BRUN AND JEAN ZYLBER

Laboratoire de Chimie Organique Sélective, GCOBO, Université II Faculté des Sciences de Luminy, F13288 Marseille CEDEX 9, France

(Received 16 May 1994; accepted 10 October 1994)

Abstract

The title compound is a precursor of optically active γ -lactams. Two crystalline forms, solvated with DMSO (C₁₅H₁₃NO₄.C₂H₆OS) and unsolvated (C₁₅H₁₃NO₄), were found and analyzed.

Comment

The reaction of *N*-furfuryl amine with maleic anhydride leads to a tricyclic compound. Two different pathways may occur for this cyclization reaction: (*a*) an intermolecular Diels–Alder reaction between maleic anhydride and the furan nucleus followed by an intramolecular attack of the amino group on the anhydride function, or (*b*) condensation of the amine with maleic anhydride followed by an intramolecular Diels–Alder reaction. The mechanism of the reaction has been reinvestigated and fully elucidated; it was found to proceed by pathway (*b*) (Brun, Zylber, Pèpe & Reboul, 1994). However, the structure of the final adduct has been a matter of controversy and two different configurations, (1) and (2), have been proposed (Bilovic, 1968; Isaacs & van der Beeke, 1982).

The solvated crystals (I) were obtained from DMSO solution while the unsolvated crystals (II) were grown from diethyl ether solution. The X-ray analyses indicate the existence of configuration (1) only. The interatomic distances and the valence angles are equivalent in the two crystalline forms, but the phenyl ring occupies two symmetric positions with respect to the five-membered ring, characterized by the torsion angle C1—C6—N7—C11 [160.7 (5) and -155.0 (5)° for (I) and (II), respectively], while the position of the carboxyl group

Fig. 1. ORTEPII drawing (Johnson, 1976) of the solvated compound (I) with displacement ellipsoids at 50% probability.

plane with respect to the bridged ring, characterized by the torsion angle C10—C16—C17—O19, is almost the same $[-91.8(5) \text{ and } -93.1(4)^{\circ} \text{ for (I) and (II), respectively].}$

In compound (I), a hydrogen bond between atom O18 of the carboxyl group and atom O24 of the DMSO molecule is observed, the O···O distance being 2.593 (8) Å. The intermolecular contacts in the crystal are of van der Waals nature. In compound (II), a hydrogen bond between the exocyclic O12 atom and atom O18 of the closest molecule (related by a center of symmetry) is observed, the O···O distance being 2.632 (7) Å.

Fig. 2. ORTEPII drawing (Johnson, 1976) of the unsolvated compound (II) with displacement ellipsoids at 50% probability.

Experimental

Compound (I)

Crystal data $C_{15}H_{13}NO_4.C_2H_6OS$ $M_r = 349.35$ Monoclinic $P2_1/n$ a = 7.813 (2) Å b = 11.830 (2) Å c = 19.022 (6) Å $\beta = 100.61 (3)^{\circ}$ $V = 1728.1 (4) Å^3$ Z = 4 $D_x = 1.343 \text{ Mg m}^{-3}$ $D_m = 1.35 (2) \text{ Mg m}^{-3}$

Data collection

Enraf–Nonius CAD-4 diffractometer

 θ scans

Absorption correction:

none

3723 measured reflections 3449 independent reflections 2924 observed reflections $[l > 3.0\sigma(l)]$ Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 15-45^{\circ}$ $\mu = 1.78$ mm⁻¹ T = 293 K Hexagonal prism $0.5 \times 0.4 \times 0.3$ mm Colourless

 $\theta_{\max} = 45^{\circ}$ $h = -8 \rightarrow 8$ $k = 0 \rightarrow 12$ $l = 0 \rightarrow 20$ 4 standard reflections frequency: 60 min intensity decay: none

Refinement

Refineme	nt				C10	0.2687 (2)	0.0307 (2	2) 0	0.3683 (1)	2.3 (1)
Refineme	ent on F		$(\Delta/\sigma)_{\rm max} = 0.15$		012	0.1930(2) 0.0787(2)	-0.0473 (1) U 1) 0).2891 (1)	2.1 (1)
R = 0.044	4		$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}$	-3	C13	0.4812 (3)	0.1615 (2) 0	.4406 (1)	3.6 (1)
wR = 0.0	44		$\Delta \rho_{\rm min} = -0.20 \ {\rm e}$	$Å^{-3}$	C14	0.3806 (3)	0.1744 (2) 0	.4881 (1)	3.9 (1)
S = 0.74			Atomic scattering	factors	C15	0.1958 (3)	0.1714 (2) 0).4473 (1)	3.0 (1)
2924 refle	ections		from Internatio	nal Tables	C16 C17	-0.0422(3)	0.0325 (2) 0 2) 0).4246 (1)	2.7(1)
274 para	meters		for X-ray Cryst	allography	018	-0.0932(2)	-0.0737 (1) 0	.4000 (1)	3.6 (1)
H-atom d	lisplacement		(1974, Vol. IV.	Table	019	-0.1416 (2)	0.1074 (1) 0).3725 (1)	4.6 (1)
parame	eters not refine	d	2.2B)		020	0.2167 (2)	0.2195 (1) 0).3799 (1)	2.9(1)
Unit weig	phts applied	-	,		C22	-0.3440(4)	-0.1390 (3) 0	2723(1)	5.1 (1)
	5				C23	-0.3319 (4)	-0.3108 (3) 0).2993 (2)	5.5 (1)
Compou	nd (II)				O24	-0.4107 (2)	-0.1073 (2) 0).3343 (1)	4.8 (1)
Crystal d	ata				Table 1	Enantian	al atomia	aaandin	ates and	aquinalant
CicHiaNO	0,		$C_{\rm U} K \alpha$ radiation			. Fraction		coorain	ales and	
$M_{\star} = 271$.27		$\lambda = 1.5418$ Å		isc	piropic aisp	nacement p	paramet	ers (A ²) j	$ror(\mathbf{II})$
Monoclin	nic		Cell parameters fr	om 25			$B_{eq} = (4/3)\Sigma$	$\Sigma_i \Sigma_i \beta_{ii} \mathbf{a}_{i,i}$	a .	
A2/a			reflections	0.11 20		r		— , ,- , ,		<i>R</i>
a = 16.06	51 (5) Å		$\theta = 15 - 45^{\circ}$		C1	-0.0087(1)	-0.1955 (1) -0).4759 (2)	3.0(1)
h = 13.90			$\mu = 0.76 \text{ mm}^{-1}$		C2	0.0484 (1)	-0.1829 (2) –0).4045 (2)	3.6 (1)
c = 11.50	(2) A (2) Å		T = 293 K		C3	0.1128 (1)	-0.1198 (2) -0).4366 (2)	3.2 (1)
B = 81.33	$(2)^{\circ}$		Square prism		C4	0.1182(1)	-0.0656 (1) -0).5385 (2)	3.2 (1)
p = 01.4 V = 2571	$6(7)$ 1 3		$05 \times 03 \times 03$ r	nm	C5 C6	-0.0043(1)	-0.1400 (1) -0 1) -0	0.5801(1)	2.3(1) 2.0(1)
7 - 23/1	.0 (7) A		Colourless		N7	-0.0642 (1)	-0.1524 (1) -0).6497 (1)	2.0 (1)
L = 0 D = 1.40	$02 Ma m^{-3}$		Colourioss		C8	-0.1442 (1)	-0.1923 (1) -0).6012 (1)	2.6 (1)
$D_x = 1.40$	$1 (2) Ma m^{-3}$				C9	-0.1931 (1)	-0.1682 (-0).6921 (1)	1.7 (1)
$D_m = 1.4$	ured by flotati				C10 C11	-0.1348(1) -0.0583(1)	-0.1665 (1) -0 1) -0) 7685 (1)	2.2(1)
D_m meas	uleu by notati	JII			012	0.0041 (1)	-0.1060 (1) -0).8290 (1)	3.0(1)
Data coll	laction				C13	-0.2709 (1)	-0.2161 (1) -0).7113 (2)	3.1 (1)
	ection				C14	-0.3052 (1)	-0.1531 (2) -0).7761 (2)	3.0(1)
Enrat-No	onius CAD-4		$\theta_{\rm max} = 45^{\circ}$		C15 C16	-0.2312(1) -0.1775(1)	-0.0947 (1) -0 1) -0) 8848 (1)	2.6(1)
diffract	tometer		$h = -17 \rightarrow 17$		C17	-0.1285(1)	-0.0056 (1) -0).9375 (1)	2.1 (1)
θ scans			$k = 0 \rightarrow 14$		018	-0.0864 (1)	-0.0294 (1) -1	.0369 (1)	4.1 (1)
Absorptio	on correction:		$l = 0 \rightarrow 12$		019	-0.1283(1)	0.0763 (1) -0).8954 (1)	5.1 (1)
none			4 standard reflecti	ons	020	-0.2100 (1)	-0.0024 (1) -0	.0075(1)	2.2 (1)
5489 mea	asured reflection	ons	frequency: 60 r	nin	Table	3 Selecter	d aeometri	c naram	eters (Å	\circ) for (I)
2552 inde	ependent rened	ctions	intensity decay:	none		5.500000				
2350 008	erved renectio	ns			C1 - C2		1.360 (4)	C1701	8 Q	1.324 (3)
I > 5	$.0\sigma(I)$				C10-C9		1.549 (3)	C2C3		1.383 (5)
Rofinomo	nt				C10-C11		1.520 (3)	C22—S2	1	1.784 (4)
Rejmente					C10-C16	j -	1.556 (3)	C23-S2	1	1.766 (4)
Refineme	ent on F		$(\Delta/\sigma)_{\rm max} = 0.13$	_3	C11-N/	,	1.362 (2)	C_{4}		1.303 (3)
R = 0.04	1		$\Delta \rho_{\rm max} = 0.25 \ {\rm e \ A}$	 °3	C13-C9	•	1.497 (3)	C5—C6		1.392 (4)
wR = 0.0	41		$\Delta \rho_{\rm min} = -0.23 \ {\rm e}$	A ⁻⁵	C13-C14	Ļ	1.311 (4)	C6N7		1.415 (3)
S = 0.93			Atomic scattering	factors	C14-C15		1.509 (4)	C8N7		1.475 (3)
2356 refl	ections		trom Internatio	nal Tables	C15-C16)	1.549 (4)	C9-020)	1.444 (3)
220 parai	meters		for X-ray Cryst	allography	C16-C17		1.508 (4)	024—S2	1	1.507 (2)
H-atom d	lisplacement		(1974, Vol. IV, 0.00)	Table	<u></u>		101 6 (4)	C3C4-	5	122.2 (6)
parame	eters not refine	d	2.2B)		C11-C10		121.4 (5)	C4C5-	C6	119.4 (5)
Unit weig	ghts applied				C16—C10	—С9	101.3 (4)	C1-C6-	C5	117.5 (5)
Tabla 1	Fractional	atomia	coordinates and	aquivalant	C10-C11	—N7	108.5 (4)	C1C6	-N7	120.1 (5)
Table 1. Fractional atomic coordinates and equivalent		N7-C11-	-012	125.1 (4)	0-08-	–n7 –N7	103.4 (5)			
iso	tropic aisplac	cement p	parameters (A ²) J	or (1)	C14-C13	—С9	105.4 (5)	C10-C9		106.0 (5)
	Ben	$= (4/3)\Sigma$	$\sum_{i} \sum_{i} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{i}$		C13-C14		106.3 (5)	C10-C9	-C13	109.7 (5)
	~ eq		· -,,-,,,-,. 7	R	C14-C15		108.5 (5)	C10-C9	020 C%	99.7 (4) 125 7 (5)
C 1	0.3214(3)	y 0.1865 (2	2) 0.1433(1)	3.4(1)	C14-C15		100.6 (5)	C13-C9		101.6 (4)
C2	0.3234 (4)	0.1896 (2	2) 0.0720 (1)	4.5 (1)	C10-C16	-C15	100.1 (5)	C8-C9-		111.2 (4)
C3	0.2704 (5)	0.0953 (3	3) 0.0307 (1)	5.6 (1)	C10-C16		114.7 (5)	C11—N7	/C6	126.1 (4)
C4	0.2164 (5)	0.0019 (2	$\begin{array}{c} 2) & 0.0625(1) \\ 0.1343(1) \end{array}$	5.5(1)	C15-C16		112.2 (5)	C11N7		113.1 (4) 120.6 (4)
C6	0.2144 (4)	0.0911 (2	(1) = (1)	2.4 (1)	C16-C17	—018 7—019	125.0 (6)	C15-02	C9	95.4 (5)
N7	0.2800 (5)	0.0904 (1	1) 0.2519 (1)	2.2 (1)	O18-C1	7—019	122.5 (7)	C22-S2	1-C23	99.2 (4)
Ç8	0.4057 (3)	0.1634 (2	2) 0.2985 (1)	2.8 (1)	C1_C2_	-C3	119.2 (8)	C22—S2	1-024	106.1 (4)
C9	0.3598 (2)	0.1473 (2	2) 0.3705(1)	2.3 (1)	C2—C3—	- 4	119.1 (7)	C23-S2	1-024	105.0 (4)

Table 4. Selected geometric parameters (Å, °) for (II)

	-	-	
C1—C2	1.375 (4)	C16-C17	1.517 (3)
C1-C6	1.406 (3)	C17—O18	1.301 (3)
C10C9	1.542 (3)	C17—O19	1.188 (3)
C10-C11	1.492 (3)	C2—C3	1.381 (4)
C10-C16	1.554 (3)	C3—C4	1.374 (4)
C11—N7	1.383 (3)	C4—C5	1.394 (3)
C11-012	1.244 (3)	C5—C6	1.393 (3)
C13-C9	1.510 (3)	C6—N7	1.399 (3)
C13-C14	1.314 (4)	C8—N7	1.486 (3)
C14-C15	1.505 (3)	C8—C9	1.472 (3)
C15-C16	1.565 (3)	C9—O20	1.453 (3)
C15—O20	1.450 (3)		
C11-C10-C9	102.4 (3)	C2-C3-C4	119.7 (6)
C11-C10-C16	120.9 (4)	C3-C4-C5	120.7 (5)
C16-C10-C9	102.5 (3)	C4—C5—C6	119.8 (4)
C10-C11-N7	108.9 (4)	C1-C6-C5	118.8 (4)
C10-C11-O12	128.3 (4)	C1-C6-N7	119.0 (4)
N7-C11-O12	122.7 (4)	C5-C6-N7	122.2 (4)
C14-C13-C9	106.9 (5)	C9-C8-N7	103.4 (4)
C13C14C15	105.9 (5)	C10-C9-C8	105.7 (4)
C14-C15-C16	106.6 (4)	C10-C9-C13	109.9 (4)
C14-C15-O20	101.2 (4)	C10-C9-O20	98.8 (3)
C16-C15-O20	100.8 (3)	C13-C9-C8	127.9 (4)
C10-C16-C15	100.1 (3)	C13-C9-O20	99.7 (3)
C10-C16-C17	115.5 (4)	C8-C9-O20	111.3 (4)
C15-C16-C17	113.1 (4)	C11—N7—C6	127.3 (4)
C16-C17-O18	111.4 (4)	C11-N7-C8	111.1 (4)
C16-C17-019	125.3 (4)	C6-N7-C8	121.6 (4)
O18-C17-O19	123.4 (4)	C15-020-C9	96.5 (4)
C1-C2-C3	120.7 (6)		

For both compounds, data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: local program (CRMC2, France); program(s) used to solve structures: MULTAN80 (Main et al., 1980); program(s) used to refine structures: SHELX76 (Sheldrick, 1976); molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1143). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bilovic, D. (1968). Croat. Chem. Acta, 40, 15-22.
- Brun, P., Zylber, J., Pèpe, G. & Reboul, J.-P. (1994). Heterocycl. Commun. In the press.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Isaacs, N. S. & van der Beeke, P. (1982). Chem. Lett. 23, 2147–2148. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Acta Cryst. (1995). C51, 732-734

A New Bioactive β -Dihydroagarofuran Sesquiterpenoid

Q. WANG AND Y. TU

Instrumental Analysis and Research Center, Lanzhou University, Lanzhou 730000, People's Republic of China

(Received 2 November 1990; accepted 23 March 1993)

Abstract

The structure of a new sesquiterpene, 1β , 2β -diacetoxy- 9α -(3-phenyl-2-oxiranylcarboxy)- β -dihydroagarofuran, from *Celastraceae* has been determined and found to have a very interesting three-membered ring.

Comment

Historically, bioactive β -dihydroagarofuran sesquiterpenoids of the plant genus *Celastraceae* have been used as insecticides in China. Recently, a new sesquiterpene, 1β , 2β -diacetoxy- 9α -(3-phenyl-2-oxiranylcarboxy)- β -dihydroagarofuran, (I), has been isolated from the seeds of *C. gemmatus loes*. Experiments show that for the cabbage worm, *Pieris rapae* (a main species of injurous insects), the death rate is about 50% at a concentration of 500 p.p.m.

Fig. 1 shows the structure of the β -dihydroagarofuran sesquiterpenoid. Both rings A and B adopt the chair conformation and they are almost parallel. The C ring is virtually perpendicular to A and B. The mean dihedral angle between the C and A/B rings is 83°. The 9 α -hydroxy group of the B ring is esterified by an epoxidized cinnamoyl residue. The presence of the epoxy group is difficult to distinguish by chemical means or magnetic resonance, because it is easily converted into cinnamic acid in aqueous solution.

Related studies on dihydroagarofuran sesquiterpenoids have been reported by Delle Monache, Marini Bettolo & Bernays (1984), Jacobson (1958), Yamada, Shizuri & Hirate (1978), Wakabayashi *et al.* (1988) and Rosza, Perjesi, Pelzer, Argay & Kálmán (1989).